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UniFluVec influenza vector induces heterosubtypic protection in ferrets
after intranasal administration despite high attenuation
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ABSTRACT

BACKGROUND: Current influenza vaccines primarily elicit strain-specific immunity, providing limited protection
against heterologous influenza strains.

OBJECTIVE: This study aimed to develop a novel live attenuated influenza vaccine candidate with enhanced broad-
spectrum protection against heterologous strains.

METHODS: A new live attenuated influenza vector, UniFluVec, was constructed based on the A/Puerto Rico/8/1934
(HIN1) (PR/8/34) strain, incorporating surface antigens from the A/Mississippi/10/2013 (HIN1pdm) strain. The NS
genomic segment of UniFluVec was modified to express a truncated NS1 protein (124 amino acids) fused to conserved
sequence from the HA2 subunit found in both influenza A and B viruses. To further enhance attenuation, the nep
gene of PR/8/34 was replaced with its counterpart from the A/Singapore/1/57 (H2N2) strain. The protective efficacy
of UniFluVec was tested in ferrets against the heterologous seasonal A/Saint Petersburg/224/2015 (H3N2) strain,
following either single or double immunizations, and compared to the reassortant differing from UniFluVec by the
presence of an intact NS fragment (WTNS1).

RESULTS: UniFluVec demonstrated full attenuation in ferrets, causing no clinical symptoms, weight loss, or fever
when administered intranasally at a dose of 7.8 log, EID, . Replication in the nasal tissues was significantly reduced
compared to the control WTNS1 reassortant virus. Although UniFluVec elicited lower hemagglutination inhibition
(HAI) antibody titers after a single immunization compared to WTNS1, it significantly accelerated the clearance of
the heterologous H3N2 virus from the respiratory tract after challenge. The protective effect of a single immunization
was comparable to double vaccination and superior to that observed with WTNS1.

CONCLUSION: The novel UniFluVec vector demonstrated excellent safety in ferrets after intranasal administration
and conferred effective protection against a heterologous strain following a single immunization.
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INTRODUCTION

According to the World Health Organization (WHO),
approximately one billion people each year are infected
with seasonal influenza virus, resulting in 3 to 5 million
severe cases annually (https://www.who.int/news-
room/fact-sheets/detail/influenza-(seasonal)). The
high mutation rate of influenza viruses, driven by the
lack of proofreading activity in their RNA polymerases
and the selective pressure of herd immunity, leads to
frequent changes in the virus’s surface glycoproteins,
hemagglutinin (HA) and neuraminidase (NA). This
antigenic drift results in the emergence of new variants,
which are responsible for annual influenza epidemics [1].

The standard method of influenza prevention relies
on yearly vaccinations with licensed live attenuated or
inactivated vaccines. Inactivated influenza vaccines,
which dominate the market, primarily stimulate a
strain-specific antibody response and B cell memory
but fail to effectively prime cross-reactive CDS8*
cytotoxic T lymphocytes (CTLs). As a result, they offer
limited protection against emerging homosubtypic or
heterosubtypic strains [2]. In contrast, live attenuated
influenza vaccines (LAIVs) have been shown to induce
broader protection in laboratory animals by stimulating
local mucosal IgA production and generating cross-
reactive T-cell responses, including the formation of
respiratory resident memory T-cells (Trm) [3-6]. However,
clinical studies have demonstrated that while LAIVs can
protect against new viruses of the same subtype, they
are often insufficient to protect against heterosubtypic
variants [7, 8].

To enhance the protective efficacy of live influenza
vaccines, we developed a novel vaccine platform utilizing
viruses with deleted or truncated NS1 proteins [9]. This
approach has led to the development of several influenza
vaccine candidates and viral vectors [10-14]. Previous
research has shown that influenza viruses with shortened
NS1 proteins promote the production of polyfunctional
CD8* and CD4* Trm cells, which recognize a broad range
of conserved influenza epitopes [15-16]. Furthermore,
vaccine candidates with deleted nsI gene have been
evaluated in multiple clinical trials, demonstrating
excellent safety profiles and robust immunogenicity
[17,18].

In this study, we aimed to further improve the
heterosubtypic protective efficacy of live attenuated
influenza vaccines by modifying the NS genomic segment.
We developed a novel vaccine candidate, UniFluVec,
designed for production in embryonated chicken eggs.
The vector was engineered to express a truncated NS1
protein consisting of the N-terminal 124 amino acids
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(NS,,). Additionally, the NS, protein was fused with
21 N-terminal amino acid (aa) fragment derived from
the HA2 subunit of the influenza B/Lee/40 virus, which
contains the highly conserved fusion peptide found in
both influenza A and B viruses, as well as a conserved
B-cell epitope of the influenza A NP protein [19, 20].
To further improve the safety profile of UniFluVec, the
original nep gene of the A/Puerto Rico/8/1934 (HIN1)
(PR/8/34) virus was replaced with the corresponding gene
from the A/Singapore/1/57 (H2N2) virus [21]. This genetic
modification increased viral attenuation, allowing for
the administration of a high dose (7.8 log EID., or
50% embryo infectious dose) of the vector in ferret
immunization studies.

The primary goal of this investigation was to evaluate
the protective efficacy of the UniFluVec vector against a
heterologous H3N2 virus in ferrets following either single
or double intranasal immunization. Additionally, we
compared the protective efficacy of UniFluVec to a control
virus carrying the wild-type (wt) NS1 protein (WTNS1)
to assess the impact of NS segment modifications on the
immune response.

MATERIALS AND METHODS

Epidemic virus

Epidemic  wild-type influenza challenge virus
A/Saint Petersburg/224/2015 (H3N2) was obtained from
the collection of Smorodintsev Research Institute of
Influenza (St. Petersburg, Russia). The virus was grown
and titrated on Madin-Darby canine kidney (MDCK)
cells in DMEM medium (Gibco, USA) at 37°C and 5% CO,
with the addition of 1 pg/ml trypsin (tolylsulfonyl
phenylalanyl chloromethyl ketone, TPCK-treated,
Sigma-Aldrich, USA). The infectious titer was expressed
inlog, TCID,/ml.

Virus vector

The recombinant influenza virus vector UniFluVec
was constructed by the reverse genetic method [22, 23]
using synthetic plasmids generated by GeneArt
(Germany). The HA and NA fragments originated from
A/Mississippi/10/2013 (HIN1pdm) influenza virus and
PB2, PB1, PA, NP, M and NS fragments - from PR/8/34
strain. The NS fragment contained a chimeric nsI gene
encoding the NS, protein of PR/8/34 virus fused to
21 aa sequence of the fusion peptide of the influenza
B/Lee/1940 virus and the NP, . peptide of PR/8/34
virus. NEP open reading frame (ORF) was replaced by
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its equivalent from A/Singapore/1/57 (H2N2) influenza
strain. Viral vector UniFluVec was obtained employing
electroporation of Vero cells followed by propagation in
specific-pathogen free (SPF) embryonated chicken eggs
(CE, Valo BioMedia, Germany) as described earlier [21].

Influenzavirus WTNS1was used as a positive control of
immunization. This virus is the 6/2 reassortant containing
HA and NA fragments from virus A/Mississippi/10/2013
(HIN1pdm), while PB2, PB1, PA, NP, M, NS fragments
originate from PR/8/34 (HIN1). WTNS1 virus was
obtained by the same method as UniFluVec using the
same set of plasmids except the pHW-PR8-NS to obtain
wt NS fragment encoding original NS1 and NEP proteins
of PR/8/34 virus.

UniFluVec and WTNS1 viruses were grown in
9-10-day-old CE at 34°C for 48 h. The infectious activity
of the viruses was assessed by titration in CE and
expressed in log EID, /ml. The genetic stability of the
vector was controlled by consecutive 10 passages in CE
with subsequent control of insertion.

Animal experiment

The animal experiment was carried out at MediTox
s.r.0. (Czech Republic) in compliance with the European
Convention for the protection of vertebrate animals
used for experimental and other scientific purposes
(ETS 123), Collection of laws No. 246/1992, inclusive of
the amendments, on the Protection of animals against
cruelty, and Public Notice of the Ministry of Agriculture
of the Czech Republic, Czech Collection of laws
No. 419/2012 as amended, on keeping and exploitation
of experimental animals. The study was approved by the
Institutional Animal Care and Use Committee (IACUC)
and the Committee for Animal Protection of the Ministry
of Industry and Trade of the Czech Republic (49/2015).
Procedures used for experiments were designed to
conform to accepted practices and to minimize or avoid
causing pain, distress, or discomfort to the animals.

Ferrets were housed individually in cages (MIDWEST
Homes for Pets, USA). Environmental conditions
(temperature and relative humidity) were monitored and
recorded daily. Room temperature was within the range
of 15-21°C, relative humidity 20-85%, light/dark regime
12 h. Access to every room was under Biosafety level 2
(BSL-2) conditions.

The animals were fed a standard pelletized diet (Calibra
Cat) with monitored quality during the acclimation and
study periods. Water of monitored quality was supplied
ad libitum during the acclimation and study periods.
Ferrets were acclimated for 8 days. Only animals in good
health conditions were used for the study.
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SPGN buffer (6% w/v Sucrose, 3.8 mM KH,PO,, 7.2 mM
K,HPO,, 4.9 mM L-glutamate, 75 mM NaCl, Sigma-Aldrich,,
USA) served as the vehicle for the challenge, immunization,
andnasal washings. At day 1 the group of sedated (isoflurane
inhalation) ferrets (n=9) was immunized intranasally (i.n.)
with 0.5 ml of UniFluVec at a dose of 7.8 log, EID, /animal.
At D22 the group of UniFluVec primed animals was boosted
again with UniFluVec (7.8 log EID, /animal, referred to
as UniFluVec x2) whereas the remaining three groups
of ferrets received only a single i.n. immunization either
with WTNS1 virus (n=9) (7.8 log, EID, /animal), UniFluVec
(7.8 log,EID, /animal, referred to as UniFluVec x1) (n=9)
or with SPGN (n=8) buffer in a volume of 0.5 ml/ferret.
After another three weeks (D43), all ferrets received light
sedation and were subsequently inoculated with the
challenge virus A/Saint Petersburg/224/2015 i.n. in a dose
of 4.2 log, TCID, /animal.

At D24, D26, and D28 after immunization and
D45, D47, and D49 after the challenge infection, nasal
washings were collected from all ferrets. Clinical
observation was determined on days D21-33 and D42-53.
Fever was determined at days D18-33 and at days D39-
53. Body weight measurements were conducted at days
D -8, D1 (UniFluVec x2 group), between days D20-33 and
D41-53. Serum samples were collected at days D -8, D21
(UniFluVec x2 group) and D42.

Assessment of clinical symptoms

All animals underwent weighing procedures at D-8
and during two intervals: from D20 to D33, and from
D41 to D53. The animals of the UniFluVec x2 group
were weighed at D1 before the primary immunization
with UniFluVec. All animals were monitored daily for
mortality and general health status (D -8-53). Clinical
symptoms including sneezing, nasal discharge, activity
status, neurological symptoms, and inappetence were
monitored twice a day and the daily score was assigned as
the sum of morning and evening scores. All scores were
summed for each ferret over the period of observation
(D21-33 and D42-53), divided by the number of days
(13 and 12 respectively), and averaged per group to get
a mean daily score. Neurological symptoms of animals
(e.g., ataxia, limb paresis, torticollis, abnormal behavior,
tonic movements, stereotypes, etc.) were also assessed as
well as inappetence (yes/no). The activity was monitored
for 30 min, with scores as follows: alert and playful (0),
alert but playful only when stimulated (1), alert but not
playful when stimulated (2), and neither alert nor playful
when stimulated (3). Sneezing signs were recorded over a
10-minute period, with scores as follows: no sneezing (0),
sneezing 1-10 times (1), sneezing more than 10 times (2),
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and respiratory distress (3). Nasal discharge was assessed
as follows: no discharge (0), moderate serous discharge
(1), severe serous discharge (2), moderate mucopurulent
discharge (3), severe mucopurulent discharge (4).
Temperature was measured twice a day (at 7-9 a.m. and
8 h after the first measurement) 15 min after awaking the
ferret in the periods D18-33 and D39-53).

Determination of viral load in ferret nasal wash
samples

Nasal washes were collected at days D24, D26, D28 and
days D45, D47, D49. Viral load in nasal wash samples
was determined by titration in MDCK cells. Cells were
cultivated in DMEM medium supplemented with 10%
fetal calf serum (FCS) (Sigma-Aldrich, USA). For the
assay, cells were seeded in 96-well plates in a volume
of 100 pl/well and cultivated at 37°C and 5% CO, until
the confluent monolayer was formed. Then the growth
medium from the cells was removed and the cells were
washed twice with PBS. Frozen nasal wash samples
were thawed under cold running water, vortexed and
kept on ice. Serial 10-fold dilutions of nasal washes
were prepared in OptiPro medium (Invitrogen, USA),
supplemented with 4 mM L-Glutamin, 1% antibiotic-
antimycotic (Invitrogen), 2 ug/ml fungizone (Invitrogen),
25 pg/ml gentamycin, and 5 pg/ml trypsin. Then 100 pl
of the diluted samples were added to the wells of a 96-
well plate (in 6x repeats) with freshly washed cells.
Plates were incubated at 37°C and 5% CO, for one week
and then scored microscopically for the presence of a
cytopathic effect. Virus titers were calculated by the Reed
and Muench method and expressed as log, TCID, /ml.

Hemagglutination inhibition assay (HAI)

Collection of serum samples was performed at D -8, D21
and D42. Blood samples were drawn under anesthesia
(Midazolam 0.5 mg/kg + Medetomidine 0.08 mg/kg,
intamuscularly), centrifuged (6000 rpm for 10 min) and
serum was removed and frozen at -20°C. To destroy
unspecific inhibitors serum samples were mixed with
3 volumes of receptor-destroying enzyme (RDE; Denka
Seiken, Japan) and treated according to the manufacturer’s
instructions. The starting sample dilution was 1:4.
Each ferret serum (50 ul) was added to the first well of
the 96-well plate. To the rest of the wells, 50 ul of PBS
(Gibco, USA) was added. Serial twofold dilutions of each
serum sample including a negative control sample were
made. Then, 50 pl of the prepared A/Mississippi/10/2013
(HIN1pdm) virus (4 HA units/50 pl solution) was added
to the 96-well plate following incubation for 40 min at
room temperature. After that 100 pl of 0.8% chicken
Volume 11
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erythrocytes (freshly prepared) were added and plates
were incubated for 60-70 min at room temperature. The
highest dilution of serum, which completely inhibits
hemagglutination of erythrocytes, was considered as the
HAl titration endpoint. The reciprocal of the serum dilution
in the last well with no hemagglutination was considered as
serum HAI titer. Antibodies to the challenge virus A/Saint
Petersburg/224/2015 (H3N2) were assessed by the same.

Statistical analysis

The parameters of distribution were assessed with the
Shapiro-Wilk normality test. Group means and standard
deviations (SD) were calculated. For group comparisons
Kruskal-Wallis One-Way ANOVA test for non-parametric
data was used. The differences were considered
significant at p<0.05. GraphPad Prism program version
10.2.0 was used for analyses.

RESULTS

Vaccine vector structure

The UniFluVec vector and the control WTNS1 virus were
both constructed as 6/2 reassortants, incorporating
surface glycoproteins HA and NA from an influenza virus
of the HIN1pdm lineage. Specifically, the HA and NA
segments were sourced from the A/Mississippi/10/2013
(HIN1pdm) influenza virus, while the remaining genomic
segments were derived from the PR/8/34 strain.

The primary distinction between the two viruses is
that UniFluVec carries a chimeric NS fragment encoding
an NS1 protein truncated to 124 aa. This truncated
NS1 protein is further modified by the addition of the
N-terminal sequence from the HA2 subunit of the
influenza B virus, as well as a conserved B-cell epitope,
NP,,. .., (RESRNPGNA), from the influenza A virus
(Fig. 1). Moreover, the nep gene of PR/8/34 was replaced
with the nep gene from A/Singapore/1/57 (H2N2),
resulting in a temperature-sensitive (ts) phenotype and
enhanced attenuation, as previously demonstrated [21].

Safety of UniFluVec vector and WTNS1 virus for ferrets

Groups of ferrets were immunized intranasally with the
vector UniFluVec at a dose of 7.8 log EID, /animal once
(UniFluVec x1) or twice (UniFluVec x2) with an interval of
three weeks between immunizations. A positive control
group was immunized with an analogous 6/2 reassortant
WTNS1 (HIN1) possessing an intact NS genomic segment
at a dose of 7.8 log, EID, /animal. The negative control
group received SPGN buffer. The experimental scheme is
presented in Fig. 2.
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Fig. 1. Schematic representation of the chimeric NS segment. The chimeric NS segment includes the truncated nsI gene encoding the
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fusion peptide of influenza B/Lee/40 linked to the NP, . ., peptide of PR/8/34 virus. The gene coding
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Fig. 2. The scheme of the experiment to assess the protective potential of the UniFluVec vector in the ferret model. The days of the

experiment are designated as D.

No clinical findings were observed in animals after
immunization with any of the viruses. Nasal discharge,
sneezing, and activity symptom scores of immunized
animalsdidnotdiffer fromthoseinthecontrolgroup (SPGN)
during the observation period after the first or second
immunization (data not shown). Furthermore, there was no
decrease in weight or significant increase in temperature
observed in ferrets during the postimmunization period
(Fig.3A, B). Thus, the resulting viral vector was attenuated
in terms of clinical manifestations upon administration
at a high dose, regardless of the modification of the NS
genomic fragment.

Despite this, the virus with the wt NS segment
showed significantly higher titers in the respiratory
tract of ferrets on days 2 and 4 post immunization,
with detectable nasal titers remaining 6 days after
immunization. In contrast, titers in ferrets immunized
with the vaccine vector UniFluVec peaked on D2 after
immunization, and the virus was undetectable by D6
(Fig. 3C). These data confirm the additional attenuation
of the vaccine vector UniFluVec in direct comparison
with the WTNSI1 virus.

Ferrets immunized once with the WTNS1 virus
developed significantly higher HAI antibody titers

mir-journal.org

74

(GMT=439) against the HIN1pdm virus when compared
to animals immunized once with UniFluVec (GMT=94),
although no statistically significant difference was
revealed when compared to group UniFluVec x2
(GMT=277; Fig. 3D). Antibodies to influenza virus
A/Saint Petersburg/224/2015 (H3N2) were not detected
in any group (data not shown).

Protective efficacy of the UniFluVec vector against
heterologous A/Saint Petersburg/224/2015 (H3N2)
influenza virus in ferrets

On D43, all animals were challenged with the seasonal
epidemic influenza virus A/Saint Petersburg/224/2015
(H3N2). Animals in the control group immunized with
SPGN buffer experienced a transient decrease in body
weight until day 46, while ferrets immunized with the
WTNSI1 virus and UniFluVec twice showed body weight
loss until day 45 (Fig. 4A). In contrast, ferrets in the
UniFluVec x1 group (immunized once) were protected
from transient body weight loss and began gaining
weight immediately after the challenge infection. A
significant difference in percent of body weight increase
for both groups of vector-immunized animals compared
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Fig. 3. Body weight, temperature, individual virus titers in ferrets’ nasal washes, and HAI antibody titers post immunization with WTNS1,
UniFluVec x1, UniFluVec x2 or SPGN. A. Body weight of animals expressed as % of change from weight on D22. B. Body temperature
of ferrets after immunization expressed as group-specific mean body delta temperatures. C. Individual nasal wash titers measured 2-,
4-, and 6-days post immunization expressed in log, TCID,/ml. D. Individual serum HAI titers of ferrets (against A/Mississippi/10/2013
(HIN1pdm)) three weeks after the last immunization. The arrow indicates the day of immunization; the horizontal line indicates
Mean*SD; the dotted line indicates the detection limit of titration; n=8-9 animals per group; (*) p<0.05, (**) p<0.01, (***) p<0.001, (****)

p<0.0001, Kruskal-Wallis One-Way ANOVA test for non-paramrtric data.

to animals from the control group was observed on D46
(p<0.05, p<0.01).

On the next day after challenge infection (D44) mean
body temperature in ferrets of the control group (SPGN)
and ferrets immunized with the WTNS1 virus increased
on average by about 0.7°C to 0.8°C. In contrast, ferrets
of both groups immunized with the UniFluVec showed
an average increase of less than 0.3°C at this time point,
although the difference was not statistically significant
(Fig. 4B).

The peak virus replication of the
A/Saint Petersburg/224/2015 (H3N2) strain in the
respiratory tracts of ferrets immunized with SPGN
occurred on day 2 (Fig. 4C). At this time point, only
ferrets immunized twice with UniFluVec x2 showed a
statistically significant decrease in virus titers in nasal
washes compared to the control group (p<0.001). By D4

Volume 11 Number 1 2024

postchallenge, a significant decrease was observed in
ferrets immunized once with UniFluVec.

By D6 postchallenge infection, the control group was
still shedding more than 3.0 log TCID,/ml of virus, a
level significantly higher than the viral titers observed in
the other three groups of ferrets immunized with either
UniFluVec or WTNSI1.

Thus, intranasal immunization with the virus vector
in both groups resulted in accelerated clearance of
the heterologous influenza virus from the respiratory
tract of ferrets. Importantly, the effect of a single
immunization with a high dose of UniFluVec was nearly
comparable to the double-vaccinated group and even
superior to that observed with the WTNS1 virus. This
was evidenced by the absence of a temperature rise and
the body weight gains in the animals after the challenge
infection.
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Fig. 4. Body weight, temperature, and individual virus titers in nasal wash samples of ferrets immunized with WTNS1, UniFluVec x1,
UniFluVec x2 or SPGN after challenge with A/Saint Petersburg/224/2015 (H3N2) virus. A. Body weight of ferrets after challenge. Shown
are group-specific mean body weight, %. Stars indicate a significant difference of body weight increase for vector-immunized groups
compared to control group. B. Body temperature of ferrets after challenge expressed as group-specific mean body delta temperatures.
C. Individual virus titers in ferrets’ nasal washes 2, 4, and 6 days following the challenge infection measured in log, TCID, /ml. The dose of
challenge virus was 4.2 log, TCID, /animal; the arrow indicates the day of the challenge infection; the horizontal line indicates Mean=SD;
the dotted line indicates the limit of titration; (*) p<0.05, (**) p<0.01, (***) p<0.001, (****) p<0.0001, Kruskal-Wallis One-Way ANOVA test

for non-parametric data.

DISCUSSION

Influenza viruses can confer heterosubtypic protection
through natural infection or intranasal vaccination
with live vaccines, primarily by inducing T-cell immune
response against conserved viral epitopes [6, 7]. Licensed
live attenuated influenza vaccines could provide
significant level of protection against mismatched
strains; however, vaccine efficacy would be reduced
in comparison to matched strain [24-26]. This may be
attributed to inadequate vaccine doses and inactivation
of the vaccine virus in the nasal environment. Safety
of cold-adapted influenza viruses depends on specific
mutations across viral genomic segments [27], yet
these mutations can potentially revert, increasing the
virulence of the vaccine virus. Moreover, toxicological
concerns associated with LAIVs pose challenges
in increasing vaccine dosages [28]. Another factor
contributing to LAIVs’ efficacy issues could be the
presence of immunosuppressive sequences in the NS1
protein, which hinder both innate and specific immune
responses [29, 30].
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To address these challenges, we developed UniFluVec,
a novel vector characterized by high attenuation
achieved through extensive modifications in the NS
genomic segment. The modifications include replacing
the nep gene with a counterpart from a heterologous
influenza virus and truncating the NS1 protein by 50%.
These genetic alterations confer a temperature-sensitive
phenotype akin to cold-adapted influenza strains and
promote high cytokine production typical of influenza
virus NS1 mutants (data not shown). Made modifications
enabled safe intranasal administration of UniFluVec in
ferrets at doses as high as 7.8 log, EID. . The present study
aimed to investigate whether the level of heterologous
protection conferred by an intranasal influenza vaccine
candidate depends on the vaccine strain’s replication in
the respiratory tract of immunized animals. Therefore,
we constructed an additional reassortant virus, WTNS1,
which retained an unchanged NS genomic segment.

Our findings demonstrated that both UniFluVec and
WTNSI1 viruses were sufficiently attenuated in ferrets,

2024
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causing no clinical symptoms when administered
intranasally at doses up to 7.8 log EID.. However,
WTNSI1, with its wt NS segment, exhibited prolonged
replication in the respiratory tract of ferrets at
significantly higher titers. To assess immunogenicity
and protective efficacy, ferrets were immunized once or
twice with UniFluVec or once with WTNS1, followed by
a challenge infection with the epidemic seasonal H3N2
strain. WTNS1 induced significantly higher HAI serum
antibody responses against vector antigens in ferrets
compared to those induced by a single immunization
with UniFluVec. As expected, no detectable antibody
response to the H3N2 antigen was observed in any group.
The highest protective efficacy against heterologous
H3N2 strain was observed in ferrets that received a single
immunization with UniFluVec, as evidenced by their
stable weight gain and minimal temperature reactions
post challenge infection. Thus, productive replication
of the vaccine virus in the respiratory tract may not be
necessary to induce heterosubtypic protection against
influenza virus.

In our efforts to enhance UniFluVec’s antigenic
content, we included conserved influenza regions such
as epitopes from the HA stem region, known for cross-
clade neutralizing activity [31]. Antibodies against the
fusion peptide have shown potent antibody-dependent
cellular cytotoxicity (ADCC) against human influenza
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